Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

»ýü¿ë Til-X-ZrXÇÕ±ÝÀÇ ±â°èÀû ¼ºÁú°ú ³»ºÎ½Ä¼º

Mechanical Properties and Corrosion Resistance of Til-X- ZrX Alloys for Biomedical Implants

´ëÇÑÄ¡°ú±âÀçÇÐȸÁö 1998³â 25±Ç 1È£ p.75 ~ 84
¼Ò¼Ó »ó¼¼Á¤º¸
Á¤Á¾Çö/Jong-Hyun Jung ¹é½Â³²/³ëÇÐ/°í¿µ¹«/Seung-Nam Baek/Hak Noh/Yeong-Mu Ko

Abstract

°á·Ð
¼¼Æ÷µ¶¼ºÀÌ º¸°íµÇÁö ¾Ê°í »ýüÀûÇÕ¼ºÀÌ ¿ì¼öÇÑ Ti¿Í ZrÀ» ±âº»Á¶¼ºÀ¸·Î ÃæºÐÇÑ °­µµ¿Í
³»ºÎ½Ä¼ºÀ» Áö´Ñ »ýü¿ë Ti-ZrÇÕ±ÝÀ» °³¹ßÇϱâ À§ÇÑ ±âÃʽÇÇèÀ¸·Î Til-X
-ZrXÇձݿ¡ ´ëÇÑ ÁÖÁ¶»óÅÂ¿Í ÁÖÁ¶ÈÄ ±ÕÁúȭ󸮻óÅ¿¡¼­ÀÇ °æµµ ¹× ³»ºÎ½Ä¼º
À» Á¶»çÇÏ¿© ´ÙÀ½°ú °°Àº °á°ú¸¦ ¾ò¾ú´Ù.
1. Til-X-ZrXÇձݵéÀÇ ¹Ì¼¼Á¶Á÷À» °üÂûÇÑ °á°ú, ¼øTi¿Í ¼øZr
À» Á¦¿ÜÇÏ°í l8wt%Zr,24wt%Zr,48wt%ZrÀ» ÇÔÀ¯ÇÑ Çձݵ鿡¼­ ±ÕÁúȭó¸® À¯¹«¿¡ °ü°è¾øÀÌ
¸¶¸£ÅÙ»çÀÌÆ®Á¶Á÷ÀÌ ³ªÅ¸³µ´Ù.
2. Til-X-ZrXÇձݵéÀÇ ÁÖÁ¶Á¶Á÷°ú ±ÕÁúȭó¸®Á¶Á÷Àº
48wt%ZrÇձݿ¡¼­ °¡Àå ¹Ì¼¼È­ µÇ¾ú´Ù.
3. 48¡­60wt%ZrÀ» ÇÔÀ¯ÇÑ ÇձݵéÀÌ ±ÕÁúȭó¸® À¯¹«¿¡ °ü°è¾øÀÌ °æµµ°ªÀº ¼øTi³ª ´Ù¸¥
Á¶¼ºÀÇ Çձݵ鿡 ºñÇØ ³ô°Ô ³ªÅ¸³µ´Ù. ÀÌ´Â ÀüÀ²°í¿ëÇü ÇÕ±ÝÀÇ °æ¿ì ±â°èÀû, ¹°¸®Àû ¼ºÁúÀº
¾ç ¼ººÐ ±Ý¼ÓÀÇ ¿øÀÚ°¡ 50:50À¸·Î È¥ÇյǾî ÀÖÀ» ¶§ º¯È­°¡ °¡Àå Å©°Ô ³ªÅ¸³ª±â ¶§¹®À¸·Î
»ý°¢µÇ¸ç ±Ý¼Ó°áÁ¤ Áß¿¡ ¼­·Î ´Ù¸¥ ¿øÀÚ°¡ ġȯÇüÀ¸·Î °í¿ëµÇ¾î ÀÖÀ» ¶§ ġȯÇü ¿ëÁú¿øÀÚ¿Í
ÀüÀ§°£ÀÇ Åº¼ºÀû »óÈ£ÀÛ¿ë¿¡ ÀÇÇÑ °í¿ë°­È­ ¹× Á¶Á÷ÀÇ ¹Ì¼¼È­¿¡ ±âÀÎÇÑ °ÍÀ¸·Î »ý°¢µÈ´Ù.
4. Til-X-ZrXÇձݵ鿡¼­ ZrÇÔ·® Áõ°¡¿¡ µû¸¥ ³»ºÎ½Ä¼ºÀ» °ü
ÂûÇÑ °á°ú, ¼øTi ¹× 6wt%Zr, l2wt%Zr, l8wt%Zr, 36wt%ZrÀ» ÇÔÀ¯ÇÑ ÇձݵéÀÇ ³»ºÎ½Ä¼ºÀÌ
42wt%ZrÀ» ÇÔÀ¯ÇÑ ÇÕ±Ý ¹× ¼øZr, ½ºÅ×Àη¹½º°­(SUS316L)º¸´Ù ¿ì¼öÇÏ°Ô ³ªÅ¸³µ´Ù.
5. Til-X-ZrXÇձݵéÀÇ °æµµ, Á¶Á÷ ¹× ³»ºÎ½Ä¼ºÀº ¿­Ã³¸® À¯
¹«¿¡ °ü°è¾øÀÌ ÁÖÁ¶»óÅÂ¿Í ±ÕÁúȭó¸®ÇÑ »óÅ¿¡¼­ ºñ½ÁÇÏ°Ô ³ªÅ¸³µ´Ù.

While titanium and its alloys has been well studied for a long time, new interest in
these materials and their properties has arisen in recent with respect to their application
as biomedical metallic materials. For practical purposes, the following performances are
essential for biomaterials.
(1) low specific gravity
(2) high corrosion resistance
(3) good biostability and biocompatibility
(4) sufficient mechanical properties
(5) non-toxicity
To develop biomedical implant materials having all the properties mentioned above,
new titanium-zirconium alloys were prepared in this study. Mechanical properties and
corrosion resistance were then investigated for as-cast and as-homogeneized
Til-X-ZrX alloys in order to reveal their possible use for
biomaterials. From the experiments, the following results are obtained :
1. No martensite structure are observed in the specimens made of pure Ti and Zr. In
contrast them, Ti-Zr alloys containing 18wt%Zr, 24wt%Zr and 48wt%Zr show a kind of
martensite structure regardless heat treatment.
2. Fineness of structures for as-cast alloys seems to vary with alloy composition.
Ti-Zr alloy containing 48wt%Zr shows the finest microstructure.
3. Hardness of Ti-Zr alloys shows continuous change through the system and the
alloys containing 48 to 60wt%Zr indicate higher hardness compared with those of pure
Ti and other alloys. It is well blown that hardness is usually changed with
substitutional atoms, and effect of solute atom on hardness is greatest with an
equi-atomic composition. The greatest hardness which was obtained in Ti-Zr alloys
containing 48 to 6owt%Zr is therefore reasonable. Also, enhanced hardness can be
explained on elastic interaction between dislocation and substitutional solute atoms in
crystal structure and on fineness of structure.
4. Pure Ti and alloys containing 6wt%Zr 12wt%Zr, 18wt%Zr, 36wt%Zr show better
corrosion resistance compared with those of pure Zr, stainless steel(SUS 316L) and the
Ti-Zr alloy containing 48wt%Zr.
5. Comparing hardness, microstructure and corrosion resistance of
Til-X-ZrX alloys, no large differences between as-cast and
as-homogenized alloys are seen

biomedical implants; corrosion resistance; mechanical properties; martensite structure; elastic interaction fineness of structure;

Å°¿öµå

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI